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Upwelling regions of the mantle can undergo partial melting as a result of decompression. Many models for the
dynamicsof these regionshave largely ignored theactualmeltingprocessorhaveprescribedauniformmelting rate
proportional to the upwelling velocity. This paper uses a simple model for an upwelling column to calculate the
melting rate from conservation principles. Themodel rock comprises two chemical components, and is assumed to
be in thermodynamic equilibrium. For idealized linear phase constraints the melting rate can be calculated
analytically, and is found to be proportional to the average upwelling velocity of both the matrix and melt.
A secondary aim is to discuss reactive instabilities; the model predicts that the one dimensional state will be
linearly stable, whereas previous models have suggested that reactive infiltration instability should occur. This is
argued to be a result of the ‘background’ melting rate which has not usually been fully accounted for, but which
has a stabilizing effect. Themodel here can also be applied to a column in which somemelt is already present, and
in that case it does exhibit a channeling instability. It is concluded that accounting formelt production consistently
in mid-ocean ridge models is important when assessing the likely modes of melt transport.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magma is produced in upwelling regions of the mantle by
decompression melting: hot rock that ascends as a result of large scale
mantle convection is forced to partially melt when it intersects its
pressure dependent solidus (Fig. 1b). Melt is produced at the grain
boundaries,which forma permeable network that allows themelt to rise
as a result of its buoyancy (Turcotte and Ahern, 1978). Porous flow is
thought to be sufficiently slow that chemical equilibrium should be
effectivelymaintained between the ascendingmelt and the residual solid
matrix. This disagrees with inferences from geochemistry that erupted
melts are often in disequilibrium with the residual rock through which
they travelled, and suggests that theremust be faster, chemically isolated,
means of melt transport (Kelemen et al., 1997). This observation has
motivated a number of fluidmechanical studies to understand howmelt
flow organizes itself, and how it influences the geochemistry.

Most models have followed the formulation of McKenzie (1984),
who set out what have become known as compaction equations,
due to the viscous compaction of the matrix that distinguishes the
situation from more standard models of porous flow (Drew, 1983).
Notable topics of study have included travelling compaction waves
(eg. Scott et al., 1986), decompaction channels (Sparks and Parmentier,
1991; Spiegelman, 1993), formation of shear bands (Stevenson, 1989),
and formation of channels by reactive infiltration (Aharonov et al.,
1995; Kelemen et al., 1995). Most of these studies have ignored the
actualmelt production process, however, and focused on themovement

of melt that is somehow already present in the rock. The present paper
aims to include themeltingprocess in a consistentmanner and to look at
some of the implications of doing so, particularlywith regard to reactive
channel formation.

Several authors have includedmelting in one dimensional solutions
(Hewitt and Fowler, 2008; Ribe, 1985b; Šrámek et al., 2007; Turcotte
andAhern, 1978), but until recentlymost two dimensionalmodels have
either ignored it or have prescribed a melting rate in order to achieve a
desired degree of melting (Choblet and Parmentier, 2001; Ribe, 1985a;
Scott and Stevenson, 1989; Spiegelman et al., 2001) (notable exceptions
are Katz (2008), who used an enthalpymethod to calculate themelting
rate implicitly, and Hewitt and Fowler (2009), who calculated melting
rates but only for a single component rock).

The approach we take here follows very closely that used by Ribe
(1985b) and adopted also by Katz (2008); we assume that the mantle
rock is made up of just two components, and that the matrix and melt
are everywhere in thermodynamic equilibrium. This imposes phase
constraints on the temperature and composition of the rock which,
together with conservation laws, determine how fast it melts.

The intention is not to improve on the accuracy of existing models
for melt production; there are considerably more complete thermo-
dynamical treatments that involve parameterized melt transport
(Asimow et al., 1997; Asimow and Stolper, 1999; Ito and Mahoney,
2005; McKenzie and Bickle, 1988; Stolper and Asimow, 2007).
The intention is rather to incorporate a consistent description of the
melting process within a fluid dynamicalmodel, in the hope thatwe at
least capture its phenomenological effect on the melt flow.

Section 2 describes the simplest possible model that includes the
essential ingredients of mass, momentum and energy conservation.
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Section 3 reviews the one dimensional solutions, and introduces a
particular form of linear phase constraint that allows the melting
rate to be calculated analytically. In Section 4, we use these phase
constraints to calculate the melting rate more generally in two or
three dimensions, and notice how this relates to simplified rates that
have been assumed in the past.

The calculated melting rate can be split into components due to the
ascendingmatrix and the ascendingmelt. If there is a sufficient quantity
of melt this may lead to a reactive instability as a result of the positive
feedback between melting rate and melt flow (Ortoleva et al., 1987).
This is examined in Section 5, and there is further discussion of the
implications and limitations of this model in Section 6. We find that
instability depends upon the background steady state, and that it is
therefore important to consider the entire melting process in order to
determine whether channelization is likely to occur.

2. Model

2.1. Model setup

The situationwe consider throughout the paper is a column of rock
that is ascending as a result of the larger scale convective motion of
the mantle (Fig. 1). This prescribes boundary conditions on the rock at
the bottom of the column: it is ascending with upwelling velocityWm,
it has known potential temperature1 T m, and known composition Xm

(the rock is assumed to comprise two components, with fraction Xm

and (1−Xm) respectively. These are treated hypothetically, but might
represent, for instance, fayalite Fe2SiO4 and forsterite Mg2SiO4, which
make up olivine).

The adiabatically ascending rock intersects its solidus at a depth
denoted zm, above which partial melting is assumed to continue all the
way to the surface z=0 where the pressure is atmospheric. Note that
the one dimensionality of the upwellingmeans that the rock apparently
continues to ascend through the surface z=0; in reality it should spread
sideways near the surface and there should be a cold conductive
boundary layer making up the lithosphere. The melt that reaches the
lithosphere may refreeze, or collect in a magma chamber, or erupt to
create new crust, but these considerations are beyond the scope of this

paper.We simply assume thatmelting continues to the surface, and that
the amount and composition ofmelt theremaybe indicative of ‘erupted’
melts.

2.2. Thermodynamic equilibrium

The model assumes thermodynamic equilibrium; that is, melting
occurs sufficiently fast that the temperature and composition of the rock
are constrained by its solidus and liquidus curves. These are taken to be
given by

TS = TS0 + γps + λfS Xsð Þ; ð1Þ

TL = TL0 + γps + λfL Xlð Þ; ð2Þ

where TS0 and TL0 are reference temperatures, ps=−ρgz is the
lithostatic pressure due to density ρ and gravity g, γ is the Clapeyron
slope (assumed constant), λ is the temperature variation due to
changes in composition, and fS and fL are order one functions of the
solid composition Xs and liquid composition Xl. Example surfaces for
the solidus TS and liquidus TL are shown as functions of pressure and
composition in Figure 2a. In thermodynamic equilibrium, the liquid

Fig. 1. (a) The model column of rock is fed by a uniform supply from below moving with
vertical velocityWm, having potential temperature T m and compositionXm. (b) Thedotted
line shows the adiabatic temperature profile and the dashed line shows the pressure
dependent solidus for the initial composition Xm. Above the intersection at zm, melting
occurs and the rock follows the solidus (solid line), which varies with both pressure and
composition as the rock melts (see also the solutions to the equations shown in Fig. 3).

1 Mantle potential temperature T is the temperature T corrected for adiabatic
effects, so that T is the temperature the rock would be at if it were raised adiabatically
to the surface z=0. See Eq. (13).

Fig. 2. (a) Liquidus andsolidusgivenby Eqs. (1) and(2)with fL(Xl)=(Xl3+Xl)/2 (theupper
surface) and fS(Xs)=(Xs3−3Xs2+4Xs)/2 (the lower surface), and with γ=10−7KPa−1,
λ=600K and TL0=TS0=1050K (these illustrative forms for the solidus and liquidus are
taken from (Katz, 2008)). The red line shows the melting path taken by rock with initial
compositionXm=0.7; as therockascends (ie. thepressuredecreases) it reaches thesolidus,
and the tie linking the solidus and liquidus then gives the composition of the melt and
residualmatrix as it continues to ascend to the surface (see Fig. 3). (b) The samediagram for
linear liquidus and solidus given by Eqs. (1) and (2) with fL(Xl)=Xl+ΔX and fS(Xs)=Xs,
where ΔX=0.3, and with TL0=TS0=930 K. (Color version online).
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and solidus temperatures must be equal, and linking the two surfaces
in Figure 2a with a tie shows how this determines a relationship
between the solid and liquid compositions Xs and Xl. It may therefore
be helpful to think of the phase constraints (1) and (2) in the form

T = TS0 + γps + λfS Xsð Þ; Xl = K Xsð Þ; ð3Þ

where K(Xs) is the relationship between liquid and solid compositions,
or, alternatively, to think of T=T(ps,F), where F≡(Xs−Xm)/(Xs−Xl) is
the degree of melting.

2.3. Conservation equations

Along with these phase constraints, the model requires conserva-
tion of mass and momentum for the two phases (solid matrix and
liquid melt), conservation of each of the separate components within
those phases, and conservation of energy. The general form of these
equations is now relatively standard (McKenzie, 1984; Ribe, 1985b).
We use as simple a description as possible, as the intention is to
describe the essential dynamics of these regions, as I see them, rather
than necessarily to provide the most realistic model possible. To this
end, we make a Boussinesq approximation, assuming the densities
of each phase are the same except in the buoyancy term. The model
is then

ρ
∂ϕ
∂t + ρ∇ d ϕu½ $ = m; ð4Þ

∇ d 1−ϕð ÞV + ϕu½ $ = 0; ð5Þ

ρ
∂
∂t ϕXl½ $ + ρ∇ d ϕuXl½ $ = m1

; ð6Þ

∂
∂t 1−ϕð ÞXs + ϕXl½ $ + ∇ d 1−ϕð ÞVXs + ϕuXl½ $ = 0; ð7Þ

ps−pl ≡ P = − ηs
ϕ
∇dV; ð8Þ

ps = −ρgz; ð9Þ

ϕ u% Vð Þ = k0ϕ
n

ηl
Δρgk + ▽Pð Þ; ð10Þ

mL + ρc
∂T
∂t + ρ 1−ϕð ÞVþϕu½ $⋅ c∇T + αgT mk½ $ = 0: ð11Þ

Eqs. (4) and (5) represent overall conservation of mass. ϕ is the
volume fraction of melt, ρ is the density (now approximated to be
equal in solid and melt, whilst Δρ=ρs−ρl is the actual density
difference), u is the melt velocity, V the matrix velocity, and m is the
overall melting rate. Eqs. (6) and (7) represent conservation of the
component making up fraction Xs of the matrix and Xl of the melt
(together with Eqs. (4) and (5), this clearly ensures conservation of
the other component too).m1 is the rate of transfer of this component
from matrix to melt (m2=m−m1 is the equivalent rate for the
other component). Diffusion of the components is neglected (though
note this is macroscopic diffusion that is being neglected, on the
basis that if we estimate the Péclet number we find it is very large.
The assumption of thermodynamic equilibrium requires that diffusion
on the microscopic scale of the pores is important, as maintaining
equilibrium requires rapid transfer of components between the
phases. The same is true for heat conduction discussed below).

The pressures in matrix and melt are ps and pl, but the latter is
eliminated in favour of the effective pressure P, defined as ps−pl.
Eq. (8) is sometimes referred to as the compaction equation; it relates
the pressure difference to the rate at which the porous matrix is able

to compact as melt is extracted from it. The term ηs/ϕ is the bulk
viscosity, often also written as ζ, and this form is motivated by simple
microscopic models (eg. Bercovici and Ricard, 2003; Sleep, 1988).

Eq. (9) simply says that the matrix pressure is lithostatic, but is a
simplification of the momentum equation for the whole system, in
which a scaling analysis shows that the deviatoric matrix stress terms
are expected to be small (Hewitt and Fowler, 2008). Eq. (10) is Darcy's
law for the melt flux relative to the matrix. k0ϕn is the porosity
dependent permeability (with n taken to be 2 for the calculations
in this paper), ηl is the melt viscosity, and the potential gradient
driving the flow is −ρlgk−∇pl, which has been rewritten using
Eqs. (8) and (9).

Finally, Eq. (11) is the energy equation, in which T is the tem-
perature, L is the latent heat of melting (assumed constant), c is
the specific heat capacity and α the thermal expansion coefficient
(both assumed constant and equal in each phase). The adiabatic term
αgTk has been approximated by αgT mk on account of the absolute
temperature variation across the region being relatively small (the
adiabatic term itself is in any case relatively small, so this is a fairly
reasonable approximation). Heat conduction is neglected (see
previous discussion).

Non-equilibrium models must prescribe the melting rates m and
m1, typically as some function of the ‘distance’ from equilibrium. In
our case, assuming equilibrium, this is not necessary since the
constraints posed by Eq. (3) will effectively determine what those
rates must be. Indeed the main goal of this paper is to calculate the
melting rate in this manner. Eqs. (4)–(11) together with Eq. (3)
provide a closed system of 10 equations (in one dimension) for ϕ, m,
u,V, Xl, Xs,m1, ps,P, and T. Notice thatm1 appears only in Eq. (6), and it
therefore decouples from the other equations.

The energy Eq. (11) has been written in terms of T because the
phase constraints (3, and Fig. 2) aremost easily interpreted in terms of
T, p and X. It may be more natural, however, to consider Eq. (11) as an
entropy equation (Asimow et al., 1997), which can be written in the
conservation form

∂
∂t 1−ϕð Þss + ϕsl½ $ + ∇⋅ 1−ϕð ÞVss + ϕusl½ $ = 0: ð12Þ

Here ss and sl are the specific entropies of the matrix and melt,
and with the approximations outlined above they are related by
ss−sl ≡Δs = −L = T m (the partial specific entropy difference as a
result of compositional change at fixed T and p is ignored).

2.4. Depth of melting

Beneath the partially molten region, where the temperature is
subsolidus, the same Eqs. (4)–(11) effectively still hold, but with
ϕ=0, so that the only meaningful equations are the continuity Eq. (5)
and temperature Eq. (11). Given the known upwelling velocity Wm

and potential temperature T m, these imply V=Wmk and the steady
state adiabatic temperature profile2

Ta = T m−
αgT m

c
z: ð13Þ

On the other hand, given the initial rock composition Xm, the
solidus (Eq. (1)) also varies linearly with depth, and the depth at
which melting starts, zm, is therefore defined to be where Ta reaches
TS:

zm =
TS0 + λfS Xmð Þ−T m

γρg−αgT m = c
: ð14Þ

2 The approximation of the adiabatic term in Eq. (11) means this profile is linear
rather than the usual exponential.
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Note that zm should be negative; if Eq. (14) gives zm positive it simply
indicates that the rock remains below its solidus all the way to the
surface and no partial melting occurs. Above this depth, for zmbzb0,
the full Eqs. (3)–(11) apply, and the boundary conditions are

V = Wmk; ϕ = 0; Xs = Xm at z = zm; ð15Þ

P = 0 at z = 0; ð16Þ

the pressures being atmospheric at z=0. Since diffusion and con-
duction are ignored no further conditions on T or X at the boundaries
are required.

2.5. Relative importance of terms

Based on the scaling that is conducted later and from geophysical
inferences, we expect that the melt fraction ϕ will typically be small,
on the order of perhaps 1%, but that the matrix is sufficiently
permeable and the melt sufficiently buoyant that this allows melt
velocity u to be much larger than the matrix velocity V, perhaps
100cmy−1 compared to 3cmy−1.

The large melt velocity causes significant divergence of the melt
from the matrix, which requires that the matrix compacts (due to
mass conservation (Eq. (5))), and the effective pressure P needed to
achieve this is given by Eq. (8). The typical size of this pressure turns
out to be relatively small compared to the buoyancy term in Eq. (10);
this is indicative of the fact that the compaction length is much less
than the scale of the partial melting region (the compaction length is
a natural length scale for these equations, and can be thought of as
the length scale overwhich changes in pressure are accommodated by

melt migration andmatrix deformation. It depends upon permeability
and therefore varies spatially with ϕ, but for a typical melt fraction ϕ0

it is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ϕn

0ηs =ϕ0ηl
q

). Typical values used for the parameters
are given in Table 1.

3. One dimensional steady solutions

If we restrict solutions to a steady state in one dimension, most of
the equations can be solved analytically, as is outlined in Appendix A
(Ribe, 1985b). The melting process in this case is well known to be
equivalent to isentropic batch melting of the source rock under the
same pressure forcing (Asimow and Stolper, 1999). The main result is
the expression

m = ρWm
∂F
∂z ; ð17Þ

for the melting rate m in terms of the degree of melting F. F(z) is not
known, however, and must be determined through energy conserva-
tion together with the phase constraints. As described in Appendix A,
(11) can be integrated to give

LF + cT + αgT mz = cT m; ð18Þ

which, together with Eq. (3), provides an algebraic system to solve
for T, Xs, Xl and F as functions of z. The melting rate then follows from
Eq. (17).

Figure 3 shows an example of the solutions using the form of the
solidus and liquidus shown in Figure 2a. Solutions are shown for
two different initial compositions Xm, and it is seen that these values
have quite a large effect on the depth at which melting starts and on
the degree of melting reached at the top of the column. The zero
compaction length approximations in Eqs. (A.6)–(A.9) hold very well
except in small boundary layers at the top and bottom of the melting
region.

3.1. Linear phase constraints

It is noticeable that the variation of the melt and matrix com-
positions from their initial values wheremelting starts are quite small.

Table 1
Typical values of physical parameters used in the model.

g 10 ms−2 L 3×105Jkg−1

ρ 3000kgm−3 c 1000Jkg−1K−1

Δρ 500kgm−3 α 3×10−5 K−1

k0 4×10−9 m2 γ 10−7KPa−1

ηl 10Pa s λ 600K
ηs 1019Pa s T m 1480K
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Fig. 3. Steady one dimensional solutions (solid lines) for (a) temperature, (b) degree of melting, (c) composition, (d) melt fraction, (e) melt velocity, (f) matrix velocity and
(g) effective pressure, from Eqs. (4)–(11), with Wm=3.2cmy−1, T m = 1480K, Xm=0.7 and other parameters as in Table 1. The liquidus and solidus are as shown in Figure 2a,
which also shows the same pressure–temperature–composition path taken by this rock. In (a), the dotted line shows the adiabatic path that would be taken if no melting occurred,
and the dashed lines show the solidus for different degrees of melting (i.e. for different constant compositions relative to the initial composition Xm; their slope is the Clapeyron slope
γρg). The dotted lines in (b)–(g) show the solution for the same parameters except Xm=0.65, whilst (h) shows the temperature (as in (a)) for this dotted solution.
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This motivates considering ‘linearised’ liquidus and solidus curves,
such as in Figure 2b. These are written in the form of Eq. (3) as

T = TS0−γρgz + λXs; Xl = Xs−ΔX: ð19Þ

The constant composition changeΔX can be seen as an analogue of the
latent heat; when a small parcel of rock melts its heat changes by an
amount ρL per unit volume, and its composition changes by
an amount ΔX. This is of course a simplification, but arguably no
more drastic than those already made in treating the rock as two
components; in any case it allows for some mathematical simplifica-
tions without losing many important features of the dynamics.

The constraints (18) and (19) are then linear and are easily solved
to give:

F = G z−zmð Þ; where G =
γρgc−αgT m

L + cλΔX
: ð20Þ

Thus, for linear dependence of the solidus and liquidus on com-
position, the degree of melting is found to vary linearly with depth,
and the melting rate (Eq. (17)) is uniform, a constant multiple of the
upwelling velocity.

This is not necessarily the case if different shapes of solidus and
liquidus are assumed (although as seen in Figure 3 it may sometimes be
approximately true), and Asimow et al. (1997) suggest that a uniform
melting rate is quite unlikely in reality. Such a rate has often been
assumed in the past, however (Ribe, 1985a; Sparks and Parmentier,
1991; Spiegelman, 1996; Spiegelman et al., 2001).

4. Melting rate for linear phase constraints

The previous section showed how the degree of melting and
melting rate can be calculated straightforwardly for given phase
constraints assuming a one dimensional solution; indeed the fact that
melting is then equivalent to batch melting allows for significantly
more complex and realistic calculations (Asimow and Stolper, 1999;
Ribe, 1985b). Motivated by the simplicity of the solutions for the
linear liquidus and solidus, however, we now maintain those con-
straints (19) and return to the full Eqs. (4)–(12) in more dimensions.

The entropy and composition equations can be written in this case
as

−mΔs + ρ
∂ss
∂t + ρ 1−ϕð ÞV + ϕu½ $⋅∇ss = 0; ð21Þ

−mΔX + ρ
∂Xs

∂t + ρ 1−ϕð ÞV + ϕu½ $⋅∇Xs = 0; ð22Þ

and the linear phase constraints can be written in terms of entropy as

ss = ss0 +
cγ
T m

−α
ρ

" #
ps +

λc
T m

Xs; ð23Þ

where we have again judiciously approximated T by T m.
Combining these three equations and rearranging, we find

m = ρ 1−ϕð ÞV + ϕu½ $⋅kG; G =
γρgc−αgT m

L + cλΔX
: ð24Þ

This is the same as derived in the previous section except that
the constant upwelling rate Wm is now replaced by the average rate
(1−ϕ)W+ϕw (in one dimension mass conservation demands that
this average velocity is equal to Wm).

This is a simple but important result that I want to emphasize. The
overall melting rate is a constant multiple of the average upwelling
velocity of both matrix and melt. Unlike Eq. (17) this allows for the
possibility of non-uniform melting if there are regions where the
porosities andvelocities aredifferent. Themultiplying constantGdepends

upon the Clapeyron slope, the latent heat, and the compositional change
of the solidus, with a small correction for adiabatic cooling. It is related
to standard expressions for the productivity: G/ρg=−∂F/∂p (Asimow
et al., 1997; McKenzie, 1984).

The expression only holds for the linear phase constraints in
Figure 2b, but we might expect it to be approximately true for other
phase constraints too. Notice that if we assumed a single component
rock, so ΔX=0, Eq. (24) reduces to

m = ρ 1−ϕð ÞW + ϕw½ $ c
L

∂TS
∂p −∂Ta

∂p

" #
−∂p

∂z

" #
; ð25Þ

ie. melting rate depends only on the Clapeyron slope, as assumed by
Hewitt and Fowler (2009) and Šrámek et al. (2007). If we were to
ignore the temperature change and assume isothermal ascent then

m = ρ 1−ϕð ÞW + ϕw½ $ 1
ΔX

∂Xl

∂z ; ð26Þ

ie. melting rate depends on the slope of the equilibrium composition,
as typically assumed for studies of the reactive infiltration instability.3

4.1. Solutions for temperature and composition

Having used the entropy and composition equations with the
phase constraints to calculate the melting rate, these equations then
decouple from the remaining equations for ϕ, u, V and P. The
temperature, composition and degree of melting are therefore
independent of the flow dynamics. This is a peculiarity of the linear
phase constraints; in general the entropy and composition equations
must be solved at the same time as the remaining equations, together
with the constraints, and the melting rate is determined as part of the
overall solution (Katz, 2008). The constraints chosen here represent a
special case in which a large part of the work can be bypassed by the
calculation of m made above.

Substituting Eq. (24) into Eqs. (21) and (22), we see that ss−GΔs z
and Xs−GΔX z are constant on the streamlines of the mean velocity
(1−ϕ)V+ϕu. Hence, if the rock has uniform temperature T m

and composition Xm as it enters the column, these quantities are
uniform everywhere, and the temperature, composition and degree
of melting are given by the one dimensional solutions (see Eqs. (20),
(A.11) and (A.12)). This will be the case even if the melting rate
according to Eq. (24) varies in space, an apparently counter-intuitive
result until it is remembered that melting is really driven by how
fast rock moves down (up) the temperature (composition) gradient;
the actual values of temperature and composition do not need to
vary.

Since F follows the one dimensional solution, the melting rate
(Eq. (24)) can be related to F as in Eq. (17), which is now generalized
to

m = ρ 1−ϕð ÞW + ϕw½ $ ∂F∂z : ð27Þ

3 Note, however, that this assumes Xs(z)=Xl(z)+ΔX, so that the equilibrium
compositions of both matrix and melt vary with depth. If, like Liang et al. (2010), we
assume Xl(z) varies but Xs remains constant then m1=mXs and substituting into
Eq. (6) gives

m = ρϕw
1
ΔX

∂Xl

∂z :

Aharonov et al. (1995) and Spiegelman et al. (2001) make similar assumptions. If Xl

and Xs both vary, but with different slopes, we find an intermediate case between this
and Eq. (26), with the equilibrium slopes ∂Xl/∂z and ∂Xs/∂z weighted by the
respective fluxes ϕw and (1−ϕ)W.
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4.2. Compaction equations for melt fraction and velocities

With the melting rate calculated as above, the remaining Eqs. (4),
(5), (8) and (10) for ϕ, u, V, and P, can be written in the dimensionless
form

∂ϕ
∂t + ϕ0∇⋅ ϕV½ $ + ϕP = G V + ϕn k + δ2∇P

$ %h i
⋅k:

ϕP = ∇⋅ ϕn k + δ2∇P
$ %h i

= −∇⋅V:
ð28Þ

The variables have been scaled using the values defined in Table 2,
as described in Appendix A. Besides the small porosity scale ϕ0 there
are two additional dimensionless parameters

G = Gz0 =
γρgc−αgT m

L + cλΔX
z0 ≈ 0:25;

δ2 =
P0

Δρgz0
=

k0ϕ
n
0

ηl

ηs
ϕ0

1
z20

≈ 0:03:

ð29Þ

G is the dimensionless version of the melting rate parameter G (it also
therefore indicates the degree of melting at the top of the column),
and δ is a dimensionless compaction length (ie. the ratio of the typical
compaction length to the length scale z0).

In two dimensions the original model (Eqs. (4)–(11)) does not
actually provide enough information to solve for the full matrix
velocity V (due to the neglect of the deviatoric stresses in Eq. (9)). We
therefore follow the standard procedure of splitting V into incom-
pressible and irrotational parts, and assume the former is prescribed
entirely by the upwelling mantle flow. Thus

V = Wmk + ∇U; ð30Þ

where U is a velocity potential and Wm is the (now dimensionless)
upwelling velocity.

The intention in the next section is to consider a two dimensional
column and to examine the effect of perturbations in ϕ to the one
dimensional solution. The advantage of using the linear phase
constraints and calculating the melting rate explicitly is that we are
left with a relatively simple set of Eq. (28) to study.

5. Reactive instability

Reactive instability can occur when the melting or dissolution
rate increases with increasingmelt flow. A commonmisconception is
that it requires variations in composition (or temperature) between

areas with larger and smaller porosity. This is not the case if
equilibrium is assumed — as pointed out previously, it is the rate at
which melt moves up the solubility gradient (or down the tem-
perature gradient) which has to vary, and this is simply a result of the
permeability increasing with porosity (if disequilibrium is allowed
then of course the areas with larger porosity and larger melt flux
will tend to be relatively undersaturated). Thus, although the
temperature and the composition have been shown above to follow
the one dimensional solutions, reactive instability is evidently a
possibility.

5.1. Stability of a uniformly upwelling column

Consider the extension to two dimensions of the full melting
column zmbzb0 (zm is now dimensionless, and should be approxi-
mately −1 with the right choice of length scale). The boundary
conditions are (15) and (16), together with appropriate boundary
conditions in the second dimension, which we denote y. Previous
studies of reaction equations have tended not to look at this problem,
instead concentrating on a region, presumably near the top of the
column, where there is already some melt present. The inflow con-
dition ϕ=0 is then replaced by ϕ=ϕin, say, and an influx of melt
is prescribed; this is discussed again later. The boundary condition at
the top has also often been taken to be a ‘free flux’ condition, meaning
∂P = ∂z = 0 there, but since this top boundary condition only affects a
small O(δ2) boundary layer near z=0 (see Fig. 3) this should not
make a great difference, at least for small perturbations.

The steady one dimensional solution was found in Section 3.
Denoting this by over-bars, and defining Q=ϕ(w−W) to be the
vertical melt flux relative to the matrix, it is given approximately by
Eqs. (A.6)–(A.9):

GWm ≈Q z−zmð Þ; W ≈Wm−Q ;

ϕ≈W1 = n
m G1=n z−zmð Þ1=n; P ≈ W1−1 = n

m G1−1=n

z−zmð Þ1=n
:

ð31Þ

Since the background state depends on z in this way a linear
stability analysis (such as studied by Aharonov et al. (1995) or
Spiegelman et al. (2001)) is not straightforward. However two
dimensional numerical solutions, taking as an initial condition the
one dimensional profile with a small perturbation added to the melt
fraction, indicate that it is stable for our typical values of n and G. Small
perturbations gradually diminish as the melt rises and the matrix
compacts, and the solutions tend back to the steady one dimensional
state.

Although a full mathematical stability analysis is not attempted
here, we can understand this to some extent from the equations. Since
diffusion is neglected and reactions are assumed to instantaneously
maintain equilibrium (mathematically the model assumes the Péclet
number and Damköhler number are infinite), we expect that the
most unstable perturbations (if there are any) may be at the shortest
lateral wavelength. If we seek local perturbations of the form P =
P zð Þ + P ′exp σt + ikyð Þ (and similarly for ϕ and V), the two equa-
tions in Eq. (28)2 indicate that for high wave numbers, k→∞, the
perturbations P′ and V′must be small (no z dependence is solved for;
we consider only local perturbations so that the one dimensional state
is approximately constant, which means boundary conditions in the
z direction cannot be applied). The equation for ϕ′ from Eq. (28)1 then
becomes

σ = nGϕ n−1 1 + δ2
∂P
∂z

" #
− 1−2ϕ0ϕ
& '

P;

≈
nGQ−G W + Q

$ %

ϕ
;

ð32Þ

Table 2
Definitions of scales used to non-dimensionalise the model, along with typical values
using the parameters in Table 1.

Scale Definition Typical value Units

V0 3.2 cmy−1

z0 50 km

m0
ρV0

z0
5.7×10−11 kgm−3s−1

ϕ0
ηlV0

k0Δρg

" #1=n

0.022

u0 V0
ηlV0

k0Δρg

" #−1 =n

140 cmy−1

t0
z0
u0

3600 y

P0
ηs
ϕ0

k0ϕn
0

ηl

Δρg
z0

8.7 MPa
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where the approximation (O(ϕ0)) is replacing the steady compaction
term ϕP by the steady melt rate G W + Q

$ %
. This suggests that the

steady state may be unstable (σN0) if

nQ ≳ W + Q ; ð33Þ

and taking the approximations for Q and W in Eq. (31) this is

nGWm z−zmð Þ ≳ Wm: ð34Þ

Since we take n=2, G≈0.25 and z−zm≲1, this condition is never
satisfied and the steady state should be stable, as is found numerically.
If we took n=3, it suggests instability might be possible near the top
of the column if G≳1/3; we find numerically that it would require
even larger G, corresponding to more than 50% melting, which seems
physically unlikely.

The approximate stability condition (33) has a simple interpreta-
tion. The driving mechanism for instability is that the melting rate
increases with increasing melt flux. This is countered by compaction,
which also increases when the melt fraction increases and therefore
tends to stabilize small perturbations. The nQ term represents the
increase in melting rate due to an increase in permeability, and the
W + Q represents the increase in compaction. Only if themelting rate
dependence is strong enough (which requires that the background
flux Q is large enough) can the system be unstable.

What, then, of the reaction infiltration instability? The equations
studied here are admittedly simpler than those studied by, for in-
stance, Aharonov et al. (1995) or Spiegelman et al. (2001) since they
assume thermodynamic equilibrium and ignore diffusion, but this
infinite Damköler number, infinite Péclet number limit ought to
correspond to the most unstable cases considered there. The differ-
ence, I would argue, stems from the background state against which
one perturbs.

5.2. Stability of a column supplied with melt

Previous studies of reactive infiltration have tended to take, as a
base state, either a uniformporositywithout any ‘background’melting
(ie. only including dissolution reactions driven by melt flow), or a
situation with prescribed melting rate (proportional to Wm) in ad-
dition to the reactive dissolution, but in which there is already some

melt present at the base of the column. The choice of these background
states can completely change the stability properties.

As a comparison, consider the model in Eq. (28), but with altered
boundary conditions

V = Wink; ϕ = ϕin; Q = Q in; at z = zin; ð35Þ

where we are now considering a section of column zinbzb0 in which
there is already a quantity of melt ϕin present at the bottom, withmelt
flux Qin there.

The approximate stability condition (33) still holds in this case, but
the background states Q and W are now given by

Q ≈ Q in + G Win + Q inð Þ z−zinð Þ; W ≈ Win + Q in−Q ; ð36Þ

(ϕ and P are similarly altered). Thus instability may occur if

n Q in + G Win + Q inð Þ z−zinð Þð Þ ≳ Win + Q in; ð37Þ

where the left hand side again represents the increase in permeability
and therefore melting, and the right hand side represents the increase
in compaction, as a result of a small change in melt fraction.

The formulation of the model used in this paper is such that
the upwelling velocity Win has more importance than in the studies
of Aharonov et al. (1995) or Spiegelman et al. (2001), because it is
what ultimately drives the melting rate and therefore determines
the background state (its appearance in Eq. (37) is due to the melting
term in Eq. (28)1 rather than to the matrix advection term, which has
been ignored as O(ϕ0)). For comparison with the results of those
studies which ignore background melting however, we could take
Win=0, in which case Eq. (37) is always satisfied, since nN1.

Even if we allow WinN0, Eq. (37) still suggests instability in this
setup provided the influx Qin is sufficiently large. Any of the previous
mentioned studies which prescribe a fixed porosity or influx at the
bottom of the domain have tended to satisfy this condition (though
including diffusion and disequilibrium effects complicates whether
one actually finds instability in that situation; note also that Eq. (33) is
approximate and is only suggestive of instability).

Figures 4 and 5 show a numerical simulation of Eq. (28) with
boundary conditions Eq. (35). This shows the time evolution of small
random initial perturbations to the steady state which evolve over
time to form a series of channels. Initially these grow at the scale of

Fig. 4. Dimensionless solutions for ϕ of Eq. (28) with boundary conditions Eq. (35), and with initial condition consisting of the one dimensional steady state with additional random
noise of dimensionless amplitude 10−2 at the grid scale. Dimensionless parameters are G = 0:25, ϕ0=0.02, δ2=0.04 and the bottom boundary conditions areWin=0.3, ϕin=0.84,
Qin=0.7. The colour scale stops at ϕ=2.5ϕ0, but themelt fraction reaches up to 5 times of this at the top of some of the channels. The discretization is a rectangular grid which causes
inaccuracies where channels change horizontal grid cells; since the channels evolve to be one cell wide, a different shape of grid would be required to avoid these. (Color version
online).
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the discretization (presumably this would correspond physically to
the grain scale), but they gradually coarsen to produce well defined
channels (which are still only one grid cell wide) with larger
intervening spaces of very reduced melt fraction. The spacing
between the channels is determined by the compaction length,
though it is noticeably less than that based on ϕ0 (in the figure this is
0.2). This makes some sense since the compaction length in between
the channels decreases substantially. The larger the imposed melt
input Qin, the deeper the channels extend into the melting region. The
recent work of Liang et al. (2010) found similar results.

5.3. Channel growth

The channels that form in numerical solutions always evolve to
be just one grid cell wide, no matter how fine the resolution. This is
because the melt always wants to localise to the centre of a channel
where the resistance is least and themelt pressure is therefore lowest.
Similar behaviour is found in simulations of chimney formation in
mushy layers (Katz and Worster, 2008), and it suggests that melt
keeps localising until the melt fraction reaches 1. Indeed this is what
occurs in the numerical solutions if the discretization is fine enough
(though the solutions shown in this paper are not at sufficiently high
resolution to achieve this). This means an open melt channel forms
and the porous model is no longer appropriate there (in fact it
probably loses validity long before ϕ reaches 1); an alternative model
such as proposed by Hewitt and Fowler (2009) might be adopted for
the channel.

5.4. Non-linear instability

Although we found that the full one dimensional column in
Section 3 was not linearly unstable, it is still possible that a larger
initial perturbation could grow by the same mechanism. A local
increase in melt fraction causes an increase in the melting rate on the
right hand side of Eq. (28)1 and if this increase is sufficiently large to

combat the simultaneous increase in compaction then the perturba-
tion may grow.

Numerical solutions bear this out: for example, inserting a narrow
band of cells with a porosity of 10% near the top of the melting region
results in the melt fraction increasing in those cells, and enhanced
melting as a result of the flow into the channel ‘tip’ causes it to extend
downwards (into regions where the one dimensional solution was
linearly stable). Very high resolution is needed to capture this growth,
however, and the huge contrasts in permeability around the channel
tip mean that a more sophisticated numerical method is needed to
determine accurately how far and how fast such channels grow.

6. Discussion

6.1. Limitations of this model

The model presented here is highly simplified. It assumes that
the rock is made up of only two components and that the solidus
and liquidus temperatures depend linearly upon the concentration of
those components, while a ‘real’ mantle rock is far more complex.
The melting rate calculated in Eq. (27) made use of these specific
thermodynamic relationships and will not necessarily hold in general.
Nevertheless, to study the interaction between fluid flow and the
melting process, this may be a useful simplification to make. It is
certainly to be encouraged to use the average velocity (1−ϕ)W+ϕw,
rather than the upwelling velocity Wm, if prescribing a melting rate
using that formula.

6.2. Instability and channelized flow

We have seen that the boundary conditions imposed at the bottom
of a melting region are important. If it is supplied with enough melt,
the results of the previous section suggest that dramatic channeliza-
tion can occur. However, the amount of melt required is more than is
predicted to be produced directly beneath that region, since the one
dimensional solution for the whole column was found to be stable —

Fig. 5. Dimensionless solutions for (a) ϕ, (b) P, (c) Xl, and (d) T, at the end (t=500t0) of the run shown in Figure 4. The white arrows in (a) and the streamlines in (b) show
the direction of the melt flow. The streamlines in (c) show the direction of the matrix flow, and the streamlines in (d) show the direction of the average velocity (1−ϕ)V+ϕu.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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essentially there is not enough melt produced in the column to cause
instability (there needs to be a sufficient quantity of melt for the flow
dependence of the melting rate to become strong enough).

In the more realistic setting of a mid-ocean ridge, melt is expected
to be drawn towards the ridge axis from a much wider region. It
does not seem implausible to suppose that, at least near the top of
the melting region, the ‘upwelling column’ beneath the ridge axis is
supplied by considerably more melt than was produced directly
beneath it (as predicted by the one dimensional model).

The observation that background melting can have a stabilizing
effect is not new; Spiegelman et al. (2001) added a constant back-
groundmelting rate to their simulations and found that this tended to
reduce the channeling instability. The inclusion of the full melting
process, and not just reactive melting is therefore important in
assessing the instability. Indeed, it is not just reactive channelization
that this is important for; Scott and Stevenson (1986) pointed out
that melting tends to stabilize compaction waves (magmons) and
emphasized the importance of including the melting process
(Stevenson and Scott, 1991).

6.3. Bulk viscosity

The porosity dependence of the bulk viscosity is quite important in
analyzing stability. For the short wavelength perturbations consid-
ered in the previous section, the stabilizing effect of compaction is due
to the decrease in bulk viscosity that allows the matrix to compress
more in regions of enlarged melt fraction. Spiegelman et al. (2001)
adopt a bulk viscosity that becomes roughly constant for porosity
larger than a ‘compaction porosity’ ϕc. Exploratory simulations using
a similar form in the present model resulted in more unstable
behaviour, but only if the compaction porosity is very small. Similarly,
taking ζ=ηs/ϕm results in the right hand side of Eq. (33) being
multiplied by m, and hence the stronger the porosity dependence
the greater the stabilizing effect.

6.4. Thermodynamic pressure

The pressure in the thermodynamic relationships (1)–(2) was
taken for simplicity to be the lithostatic matrix pressure, whereas
it should really be the thermodynamic or interfacial pressure. That
is better approximated by themelt pressure (Fowler, 1985; McKenzie,
1984; Šrámek et al., 2007), in which case the solidus should have a
small correction involving P. Including this term would complicate
the solution somewhat, butmight lead to some interesting effects (see
Hewitt and Fowler, (2008) for example).

6.5. Chemical variability

The assumption of thermodynamic equilibrium can aid the
modelling of porous flow, and is quite well justified on the basis
that typical estimates for the Damköhler number are large (Aharonov
et al., 1995; Spiegelman and Kelemen, 2003; Spiegelman et al., 2001).
It is not without issues, however, since a large part of the interest in
channelised flow stems from the geochemical evidence to suggest
that melt transport is often in disequilibrium. This obviously cannot
be predicted or quantified using a model that implicitly assumes
equilibrium. One must suppose that as the flow channelizes it reaches
a stage when melt velocities in some places are so large that reaction
and microscale diffusion are too slow to maintain equilibrium there
(Spiegelman and Kenyon, 1992). This model would no longer be valid
then, but for studying the initial stages of channel formation (and
particularly whether channelization is possible) it provides a useful
simplification. As noted earlier, allowing disequilibriumwould tend to
stabilize the system and make instability less likely. In particular,
disequilibrium in a high-porosity channel would act to limit the
melting rate and prevent the runaway opening of the channel that

occurs here. A related point is that the solid matrix has been treated
here as just one phase; if it were treated as two or more, with one
more soluble than the others, exhaustion of that phasemight limit the
melting rate in a channel (Liang et al., 2010).

In the context of equilibrium melting, one can still consider the
variations that might be expected in tracer concentrations in erupted
melts (Spiegelman, 1996). For a trace element with a constant bulk
partition coefficient κ, for instance, the concentrations in matrix and
melt are related by cs=κcl, and they satisfy the same conservation
Eq. (7) as each of the major elements. With knowledge of the melt
fraction and velocities, this equation can be solved for one of the
concentrations, and an example is shown in Figure 6 for the unstable
situation in Figure 4. This is the same type of behaviour as found by
Spiegelman and Kelemen (2003): channels transport a larger tracer
concentration and the melt in the regions between the channels is
extremely depleted. The tracer element therefore bears the hallmarks
of near-fractional melting in this case, whereas the major element
compositions X were seen in Section 4 to be equivalent to batch
melting.

6.6. Different types of perturbation

The investigation of stability in the previous section was limited
to initial perturbations in melt fraction. Such heterogeneities are
presumably common in partial melting regions, but it might be more
natural to consider what happens if the supplied rock at the bottom of
the column has a distribution of composition Xm that varies in space
and perhaps time (similar perturbations in temperature are also a
possibility, although it is more likely that heat conduction would have
removed at least the small scale variations). I have not attempted to
study this here because it introduces some added complexities. In
particular, the depth zm (Eq. (14)) at which melting begins varies
with the initial composition and the melting region is no longer
rectangular. A method that solves simultaneously for subsolidus and
melting regions would be required.

One can gain some insight into what might happen in that case,
however, from Figure 3. That figure shows the steady one dimen-
sional solutions for two different initial compositions, Xm=0.7 and
Xm=0.65, and one can consider what might happen if two such

Fig. 6. Concentration in the melt (relative to the inflow concentration) of a tracer
element with constant bulk partition coefficient κ=10−2 for the situation shown in
Figure 5. White arrows and streamlines show the direction of melt flow. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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columns were side by side. The second one has a lower solidus tem-
perature and therefore begins melting at a greater depth. The melt
fraction in that column (the dotted line in the figure) is always larger
than the melt fraction in the first column, and the melt flux is
correspondingly higher. However, the effective pressure is lower, and
one might therefore expect that the melt from this column would
transfer into the first column (down the melt pressure gradient). This
would act to even out the difference in melt fraction. Amore thorough
investigation would be worthwhile however, and heat conduction
should also be included.

7. Conclusions

Including an energy equation and calculating the melting rate
from conservation principles is an important ingredient in models of
partially melting regions. Many models that account for the physics of
melt migration have studied how melt that is present in the rock
might move without incorporating the melting process; the conclu-
sion of this paper is to emphasize that the nature of melt migration
is intricately connected with the melting process. Background and
reactive melting are not necessarily decoupled, and the melting pro-
cess should therefore be considered as a whole.

The simplifications made in this paper allow the melting rate to be
calculated explicitly, and found (Eq. (27)) that it is proportional to the
average upwelling velocity and the gradient of the degree of melting.

The dependence of the melting rate on the melt velocity indicates
the potential for reactive instability, and the model was shown to
predict the growth of narrow high-porosity channels if there is a
sufficient quantity of melt. If the melt flow dependence on themelting
rate is too weak, however, the one dimensional solutions are stable.
This was found to be the case for a uniform upwelling column with a
reasonable choice of parameters, although the possibility for larger
scale focusing of the melt may still provide sufficient melt to cause
reactive instability in some areas.
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Appendix A. One dimensional steady solutions

In one dimension thematrix velocity is written asWk and themelt
velocity is wk. Integrating the steady state mass conservation Eqs. (5)
and (7) together with the conditions W=Wm, Xs=Xm and ϕ=0 at
z=zm, give

W + ϕ w−Wð Þ = Wm; ðA:1Þ

1−ϕð ÞWXs + ϕwXl = WmXm; ðA:2Þ

and rearranging these shows that

ϕw = WmF ≡ Wm
Xs−Xm

Xs−Xl
; ðA:3Þ

where F is the degree of melting. Substitution into Eq. (4) then gives
the melting rate in terms of F(z) in Eq. (17); in order to calculate F(z),
we substitute Eqs. (17) and (A.1) into the energy Eq. (11) and
integrate, with T at z=zm given by Eq. (13), to find Eq. (18):

LF + cT + αgT mz = cT m: ðA:4Þ

This is solved together with Eq. (3) and the definition F=(Xs−Xm)/
(Xs−Xl) to give T, Xs, Xl, and F as functions of z.

An alternative method is to use the entropy Eq. (12), which can
be integrated to give

1−Fð Þss + Fsl = sm; ðA:5Þ

where sm is the entropy of the upwelling rock at z=zm, and this can be
solved together with the entropy form of the phase constraints as in
Eq. (23).

The solutions in Figure 3 are found in this way for the phase
constraints in Figure 2a. ϕ, w, W and P are found numerically from
Eqs. (4), (5), (8) and (10), but can be sensibly approximated by
noticing that the matrix velocity is much smaller than the melt
velocity in Eq. (10), and since the compaction length is small, this
equation is ϕw≈k0Δρgϕn/ηl. Thus

ϕ ≈ k0Δρg
ηl

" #−1=n
W1 = n

m F1=n; ðA:6Þ

w ≈ k0Δρg
ηl

" #1=n
W1−1 = n

m F1−1=n
; ðA:7Þ

W ≈Wm 1−Fð Þ; ðA:8Þ

P ≈ ηs
k0Δρg
ηl

" #1=n
W1−1 = n

m F−1=n ∂F
∂z : ðA:9Þ

For the particular case of the linear solidus and liquidus (Eq. (19))
notice that, using the definition of zm in Eq. (14), the solidus can be
written in terms of F and z as

cT = cT m−αgT mzm−γρgc z−zmð Þ + cλΔXF: ðA:10Þ

Substituting into Eq. (A.4) therefore gives F=G(z−zm), with G
defined in the main text, and the temperature and composition are
also then linear in z:

T = T m−
αgT m

c
z− LG

c
z−zmð Þ; ðA:11Þ

Xs = Xl + ΔXð Þ = Xm + GΔX z−zmð Þ: ðA:12Þ

Appendix B. Non-dimensionalization

Using the expression for themelting rate in Eq. (24), the remaining
Eqs. (4), (5), (8) and (10) become

∂ϕ
∂t + ∇⋅ ϕu½ $ = G V + ϕ u−Vð Þ½ $⋅k; ðB:1Þ

ϕP
ηs

= ∇⋅ ϕ u−Vð Þ½ $ = −∇⋅V; ðB:2Þ

ϕ u−Vð Þ = k0ϕ
n

ηl
Δρgk + ∇Pð Þ: ðB:3Þ

For Section 5 these are scaled using the parameter values defined
in Table 2 (writing, for instance V = V0V̂, and then dropping the hats
on the dimensionless variables) to arrive at Eq. (28). The depth of
melting −zm and the upwelling velocity Wm are known a priori, and
these provide the natural choice of length scale z0 and velocity scale
V0. Since these quantities will differ between different rocks and
different locations, however, we take z0 and V0 to be ‘typical’ values
for them, and maintain the non-dimensional −zm and Wm in the
equations. Although they could always be chosen to be 1, this makes it
clearer, for instance, what the effect of a larger upwelling velocity is.
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The choice of the remaining scales is motivated by balancing the
following terms in the equations:

ϕu∼ k0Δρg
ηl

ϕn∼V0; P∼ ηs
ϕ
V0
z
: ðB:4Þ

The second of these indicates that the porosity scale ϕ0 is chosen to
balance melt flux ϕu with matrix flux V. This is a somewhat arbitrary
choice (an alternative is to choose ϕ0 by balancing the melt diver-
gence with the melting rate), but has the advantage of making the
dimensionless equations appear particularly simple. The choice of
scaling does not particularly matter, but it is helpful to choose one in
which ϕ0 is small (as is physically reasonable) to make clear which
terms in the equations are important.
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